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Introduction 
This report will summarize all findings since the midterm report. To briefly summarize, 

during the midterm report, we explored the efficacy of unembedding steering qualitatively. We 
defined a dictionary of tokens that were associated with positive text (included in appendix). To 
steer, we got the embeddings of these tokens and averaged them. We experimented with 
altering the norm of this vector as well as the size of the dictionary we are using to steer. We 
found that when generating open-ended text, we qualitatively saw a change in the behavior 
toward the steered behavior. 

After the midterm report, we completed several additional experiments to compare this 
kind of steering with more traditional kinds of steering. To start, we used the Stanford-SST [1] 
Treebank to systematically probe and benchmark different steering directions. However, after 
finding this to be unsuccessful, we followed the procedure laid out in [6], using their toy movie 
review dataset. In this set up, we see the efficacy of the probes increase drastically. 

Methods we are comparing:  
Unembedding Steering:​
We define a set of positive sentiment tokens (e.g., "good," "great," "excellent," "amazing") 
curated manually (full list in Appendix). For each token, we extract its corresponding token 
unembedding vector from the model’s final layer vocabulary projection matrix. We then 
compute the mean vector of all these unembedding vectors: 

where w_i is the unembedding of token i in the dictionary. 
At inference time, we add a scaled version of v_unembed​ to the model’s residual stream 

at a selected layer L. The steering vector is added before the layer’s computation. Scaling 
factors (typically between 0.1 and 1.0) were tuned based on steering effectiveness. These 
factors are then multiplied by the norm of the residual stream at a given token position to attain 
the final steering vector norm.  

Linear Probing Steering [2]:​
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We construct a dataset by running the model on labeled positive and negative sentences. At a 
chosen layer L, we extract the hidden states (residual activations) at either the last token or the 
key adjective/verb token.​
 Using these activations as input features, we train a logistic regression classifier to predict 
positive (label 1) vs. negative (label 0) sentiment. The resulting classifier weight vector 
W_probe[0] is used as the negative steering direction and W_probe[1] is used as the positive 
steering vector. During inference, we add a scaled version of w_probe to the residual stream at 
layer L for every token position. 

Perpendicular Steering:​
The procedure for training the perpendicular probe is essentially the same but with an 
augmented loss: 

 

Lambda is tuned such that the eventual learned vector has a low dot product with the negative 
and positive vocab sets. During inference, we add a scaled version of w_perpendicular, just as 
with other steering vectors. 

Contrastive Activation Addition (CAA) [3]:​
 We group activations into positive and negative sets based on the sentence labels.​
 At layer LLL, we compute the mean activation vector for positive and negative samples: 

The steering vector is defined as: 

At inference, we add a scaled version of v_caa​ to the residual stream at layer L. 

Evaluation:  
For evaluation, we used a contrastive prompting setup where the model had to choose 

between a positive and negative completion. To give an example, we ask the model “Did you 
like the movie today? A) Yes B) NO. Answer: ”. By measuring the logit difference (logit(A) - 
logit(B)) and comparing to the model’s preference before steering, we have a quantitative proxy 
for steering effectiveness. 

 
 



 

Stanford SST Results: 
​ The Stanford SST dataset [1] is a dataset that has sentiment labels for various 
sentences. This dataset includes continuity parsing of a sentence, but also overall sentiment 
labels which were used. For our experiments, we use the entire sentence and the overall 
sentiment label such as the following (Input: “This film doesn’t care about wit or any other kind 
of intelligent humor.”, label: 0). We then run Gemma-2-2b on 50,000 samples and save the 
activations at each layer as well as the label associated with those activations at the last token 
position of this sentence. The reason we chose this position is that previous work shows that 
models keep an ongoing record of sentiment, often reflecting on it during punctuation tokens. 
Regardless, this procedure returns a dataset where we have the activations of Gemma-2-2b at 
layer L on all the inputs, and the sentiment label associated with those activations. 
​ Once we have this dataset, we then train the linear probe, perpendicular probe on this 
dataset. The objective is binary classification in which the probe takes in an input of size 
model_hidden_dimension and outputs a 2 dimensional vector that is one hot to represent the 
class. We use CrossEntropyLoss and report the training of the probes below.  
 

Figure 1. The Training Loss of the Linear Probes on Stanford SST. The time axis represents the layer the probes 
were trained on. 
 
Here we can see that the performance of the linear probes and the perpendicular probes are 
similar and that they are learning something meaningful as their train loss is quite low. 



 

 
Figure 2. The Validation Loss of the Linear Probes on Stanford SST. The time axis represents the layer the probes 
were trained on. 

Similarly in Figure 2 we see that the probes struggle to generalize well. We then use 
these vectors to steer and find similar results.  

 

 
Figure 3. The result of probe steering. Here brighter means the model prefers the positive response.  

In figure 3, we see unusual results. At the top few layers, regardless of whether we are steering 
positively or negatively, we find that the model prefers more of the positive sentiment. Therefore 



 

we are pretty confident that the directions we found here aren’t that meaningful. Before we 
measured the unembedding, we realized that we should search for more principled probes. 

Toy Movie Review Results: 
To resolve this issue, we turned to the original linear sentiment paper [1]. In this paper, 

the authors curated a custom dataset and procedure to successfully probe. They had a single 
template prompt: f"I thought this movie was{adj}, I{verb} it.\nConclusion: This movie is". They 
then had a list of 31 single token adjectives that are positive, 17 single token adjectives that are 
negative, and 5 positive verbs and 3 negative verbs. They then create every combination of 
positive adjectives with positive verbs and likewise negative adjectives with negative verbs. This 
creates a dataset in which activations can be extracted and sentence sentiments are clear.  

We then run Gemma-2b on these prompts (206 in total) and save the activations at each 
layer at both the verb and adjective token positions. With these activations we then train the 
probes to predict sentiment based on the adjective hidden states (80% of samples), and 
evaluate whether the model can predict the sentiment on a hold out set of the verbs (20% of 
samples).  
 

Figure 4. Train and validation losses of probes trained at each layer on the toy movie review dataset. 

Figure 5. Train and validation losses of perpendicular probes trained at each layer on the toy movie review. 



 

Figures 4 and 5 reveal that the probes trained on this dataset generalize better. To validate that 
we learned something meaningful we applied PCA reduction on the activations and color coded 
by sentiment and verb and adjective. We then plot the separating hyperplane learned by the 
probes as well as the direction of change learned by CAA.  

 
Figure 6. PCA of the activations, the separating hyperplane of the probes, perpendicular probes, and CAA. Top layer 

are the standard linear probes and the bottom show the perpendicular probes. 
 

From Figure 6 it is clear that the methods learn meaningful directions. The separating 
hyperplanes projected onto the PCs seem to represent a somewhat decent linear separator. 
Moreover CAA seems to move in the positive direction when projected onto the PCs. This 
suggests that these methods are learning valid directions.  

 



 

Figure 7. Probe similarity to vocabulary that represents positive and negative sentiments for both the standard and 
perpendicular probe.  

 
We also validate that the perpendicular probes are indeed perpendicular. We measure the sum 
of the dot product onto the sentiment embeddings. What we see is that the perpendicular probe 
has very little similarity with this set whereas the standard linear probe has more, but not a 
tremendously large, reliance on this subspace. 

Figure 8. Steering success. The brighter the color the more positive the preference (baseline preference subtracted). 
We see that CAA learns the most effective steering method yet all methods are effective at swaying the preference.  

 



 

From figure 8, we now see that these vectors are more effective at changing the preference of 
the model, suggesting this dataset contains better signals for the probes to learn.  

 
 Figure 9. Key figure. Here we see that unembedding steering is very effective at altering the preference at this 
dataset. 
 
 
In Figure 8, we measure the effectiveness of steering across methods. All methods—linear 
probe steering, perpendicular probe steering, CAA, and unembedding steering—successfully 
shift the model’s preference toward positive completions. However, CAA achieves the largest 
shift, confirming that contrastive differences between positive and negative activations produce 
strong steering vectors. 
 
Finally, Figure 9 shows that unembedding steering, using only the mean of sentiment token 
embeddings, is highly effective. Despite its simplicity, it matches or even outperforms learned 
probes on this dataset. This finding highlights the strong alignment between token-level 
sentiment representations and internal model activations in this controlled setting. 
 
 
 



 

Discussion: 
Our project set out to answer several questions: whether unembedding steering alone 

could reliably influence model behavior, how different steering methods compared, and whether 
steering vectors orthogonal to unembedding space could be meaningfully learned. 

First, we found that unembedding steering was highly effective, particularly on curated 
datasets like the toy movie review set. As expected from prior work, simply averaging positive 
token embeddings provided a surprisingly strong direction for steering sentiment, providing 
evidence to the hypothesis that token unembeddings align closely with some behavioral 
concepts. 

Second, when comparing steering methods, CAA outperformed both unembedding and 
probing-based methods in steering effectiveness. However, both standard linear probes and 
perpendicular probes were also able to steer behavior reliably when trained on the toy dataset, 
suggesting that sentiment concepts are distributed but still partially captured by the embedding 
space. This partially supports our proposal’s expectation that unembedding captures much, but 
not all, of the underlying concept. 

Third, regarding orthogonal steering, we successfully trained perpendicular probes that 
achieved meaningful steering while remaining nearly orthogonal to the unembedding vectors. 
However, their steering impact was slightly weaker compared to unrestricted probes, suggesting 
that while sentiment is not solely encoded along the embedding direction, the embedding vector 
contributes significantly to the model’s internal sentiment representation. This fits our original 
hypothesis: some behaviors are tightly aligned with token statistics, though not fully reducible to 
them. 

Finally, our experiments on the Stanford SST dataset highlighted an important caveat: 
dataset quality and alignment with the model’s internal representations matter significantly. Poor 
probe performance on SST contrasted with strong results on the toy dataset, underscoring that 
effective steering depends not just on method but also on the clarity of the underlying concept 
signal. 

Overall, our findings aren’t strong enough to validate the intuition in the proposal: 
unembedding steering is strong but incomplete; orthogonal directions can be learned; and 
dataset construction critically affects benchmark outcomes. Future work should refine datasets 
further and explore whether these findings generalize to more abstract concepts beyond 
sentiment. 

We also believe that future work should explore multiple behaviors and different 
benchmarks. Prior work [4] has highlighted the limitations of using logit difference as a 
benchmark. For this reason, follow up work should use more robust benchmarks. 
 

Contributions: 
Itamar trained all the probes, extracted the CAA vectors, made the pca plots, and created the 
dataset. Hugh completed all the evaluations on his own and made those figures. Liam primarily 
wrote the reports and also facilitated the extraction of the activations from Gemma-2. 
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